Algebraic Cycles and Connes Periodicity
نویسنده
چکیده
We apply the classical technique on cyclic objects of Alain Connes to various objects, in particular to the higher Chow complex of S. Bloch to prove a Connes periodicity long exact sequence involving motivic cohomology groups. The Cyclic higher Chow groups and the Connes higher Chow groups of a variety are defined in the process and various properties of them are deduced from the known properties of the higher Chow groups. Applications include an equivalent reformulation of the Beilinson-Soulé vanishing conjecture for the motivic cohomology groups of a smooth variety X and a reformulation of the conjecture of Soulé on the order of vanishing of the zeta function of an arithmetic variety.
منابع مشابه
ar X iv : m at h / 05 08 06 6 v 1 [ m at h . N T ] 3 A ug 2 00 5 MULTIPLE POLYLOGARITHMS , POLYGONS , TREES AND ALGEBRAIC CYCLES
We construct, for a field F and a natural number n, algebraic cycles in Bloch's cubical cycle group of codimension n cycles in P 1 F \{1} 2n−1 , which correspond to weight n multiple polylogarithms with generic arguments if F ⊂ C. Moreover, we construct out of them a Hopf subalgebra in the Bloch-Kriz cycle Hopf algebra χ cycle. In the process, we are led to other Hopf algebras built from trees ...
متن کامل$varphi$-CONNES MODULE AMENABILITY OF DUAL BANACH ALGEBRAS
In this paper we define $varphi$-Connes module amenability of a dual Banach algebra $mathcal{A}$ where $varphi$ is a bounded $w_{k^*}$-module homomorphism from $mathcal{A}$ to $mathcal{A}$. We are mainly concerned with the study of $varphi$-module normal virtual diagonals. We show that if $S$ is a weakly cancellative inverse semigroup with subsemigroup $E$ of idemp...
متن کاملAlgebraic reformulation of Connes embedding problem and the free group algebra
We give a modification of I. Klep and M. Schweighofer algebraic reformulation of Connes’ embedding problem by considering ∗-algebra of the countably generated free group. This allows to consider only quadratic polynomials in unitary generators instead of arbitrary polynomials in self-adjoint generators.
متن کاملBost–connes Systems, Categorification, Quantum Statistical Mechanics, and Weil Numbers
In this article we develop a broad generalization of the classical Bost-Connes system, where roots of unit are replaced by an algebraic datum consisting of an abelian group and a semi-group of endomorphisms. Examples include roots of unit, Weil restriction, algebraic numbers, Weil numbers, CM fields, germs, completion of Weil numbers, etc. Making use of the Tannakian formalism, we categorify th...
متن کاملConnes’ Embedding Conjecture and Sums of Hermitian Squares
We show that Connes’ embedding conjecture on von Neumann algebras is equivalent to the existence of certain algebraic certificates for a polynomial in noncommuting variables to satisfy the following nonnegativity condition: The trace is nonnegative whenever self-adjoint contraction matrices of the same size are substituted for the variables. These algebraic certificates involve sums of hermitia...
متن کامل